Geometric Reduction of Measured Lines

By T. Vincenty

Abstract: This paper is a review of known procedures for use with geometric reductions of lines to the ellipsoid
and with related transformations. Empbhasis is placed on those aspects of the problem which are often ignored or
misunderstood, with sufficient information given about the magnitudes of errors that can result from using
mathematical approximations. Reduction relating to the innuence of the atmosphere are not included.

Introduction

It could be said that all there is to know about geometric reductions of measured distances to
the ellipsoid has already been written and that nothing new can be added to it. This may be
true, but it can also be said that many people are still misinformed about this subject. This
paper is therefore a restatement of correct procedures to be used for this purpose, without un-
necessarily complicating the solution.

It is known, or should be, that before a measured distance can be reduced to any projection
plane it must first be reduced to the ellipsoid, also known as "spheroid”. This process is
described usually as "reduction to sea level", which in general is incorrect because the two
surfaces, sea level and ellipsoid, are not the same but may be separated by tens of meters.
This separation is known as geoid height, geoidal height, or undulation. It varies slowly from
point to point. An error of 30 m in geoid height introduces an error of 4.7 parts per million
(ppm) in geodetic distance, that is in the length of the line on the ellipsoid, which error can be
much larger when the measured line is very steep.

In the past, reductions to sea level were not only justified but necessary because the NAD
1927 framework, like all other major geodetic networks, was computed and adjusted by the
development method which ignores geoid heights for the simple reason that they are
unknown. On the other hand, geodetic data on NAD 1983 will be published with inclusion of
geoid heights at all points for which horizontal coordinates are given. For the purpose of this
paper the term "height" will be used to denote geodetic height of the point to which the
measurement refers, that is the sum of elevation above mean sea level (or simply "elevation")
and geoid height, not elevation alone. Also, the term "surveyor" embraces members of all
professions that use surveying.

Reduction to the Ellipsoid

Two well-known methods of reducing measured distance to the ellipsoid will be given. Both
use the great circle distance on a sphere of a given radius to describe the length of the
geodetic line approximately but, with a proper choice of the radius, with adequate accuracy
for all prac tical geodetic purposes.
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First Method

Let L, denote the measured slope distance (with atmospheric and instrumental corrections ap-
plied), h; and h; the heights of its endpoints (with heights of the instruments above the
ground included), Ah the difference in heights, hy, the mean height, R, the radius of curvature
in the direction of the line (see next section), and s the length of the geodetic line, or geodetic
distance. Then the "horizontal” distance at mean height is given by

Ly = (Lo* - AhH)'?2 (1)

The horizontal distance is converted to the length of the chord on the ellipsoid by

Lc = Lh Ra/(Ra + hm) (2)
and finally
s =L + L /(24R,2). (3)

This method is an approximation but its errors are imperceptible in most practical situa
tions. The small term of (3) is often omitted over short lines such as under 10 km. If this term
has been included with atmospheric reductions, it should be removed from one place or the
other, so that it would not be applied twice.

Second Method

This method avoids the approximations of the first method except one: the assumption that
the geodetic line is an arc on a sphere. This assumption, however, is totally harmless even
over very long lines.

The chord distance is obtained bv

L.=R, [ Lo -Ah? 12 @)
(Ra+h,) ( Ry+h,)

and then the geodetic distance by

s =2 Rysin™' [ L/(2 Ry)]
(5)

Reverse Case

It is sometimes necessary to compute slope distance from geodetic distance and heights, as
for example between a radar antenna and a distant calibration target, after completion of a
survey to connect them. Then equations (1)-(3) and (4)-(5) are easily rearranged for inverse
computations as follows.



First Method

L= s-s’/(24R) (3.1

Ly = Lo( Ry + hyy )R, (2.1)

Lo = (Ly* + AhH? (1.1)
Second Method

L.= 2 Rasin[s/(2R,)] (5.1

Lo = [L&(1 + hi/Ry)(1 + ho/R,) +ARh7] Y2, (4.1)

Determination of Radius o= Curvature

At any point on the ellipsoid the radius of curvature varies with the starting azimuth of the
geodetic line. Two special cases of it are the principal radii M (in the meridian, or north-south
direction) and N (in the prime vertical, or east-west direction). In gerieral, this radius is given
by

R, =M N/(M sin® a + N cos> a)

=N/(1 + e”cos? 0} cos? a)
a (6)
12 1+ e”cos’ 0} cos? a)

=(1- e%sin’ ()]

where a is equatorial radius (major semiaxis) of the ellipsoid, ¢ is latitude of the point, e is
first eccentricity, e’ is second eccentricity, and a is azimuth of the normal section. For the
purpose of line reductions it doesnt matter much which azimuth is meant by a (geodetic or
grid), as long as it is reckoned from north or south in either direction, nor is it important at
which point of the line R, is to be computed, as will be shown presently.

A glance at equation (2) shows that, if hy,= 0 (which could occur at a low elevation if geoid
height is negative), then it doesnt matter what value of R, is used in it because it drops out,
leaving L. = L. However, even if the elevations are very low, the chord-to-arc correction by
(3), which is implicit in (5), requires a value of R, that is correct to two significant figures,
for example the equatorial radius or the mean radius of the Earth. To investigate a general
case, differentiate (2) with respect to R, to obtain the approximation

dL. = (L hy/a”)dR,.
If hy, = 2000 m and Ly, = 15000 m, an error of 1000 m in R, results in an error of less than 1
mm in reduced distance. The maximum allowable error in R, corresponding to an error in
chord distance not exceeding 0.1 ppm can be obtained from (7) as

dR, = (a° /hy) - 10-7 .

This means that even at very high elevations an error of 1500 m in the radius of curvature for
the line is acceptable in high precision surveys. It also means that if hy,= 500 m, a standard



radius of the Earth used in the above computations will produce an error in distance of less
than 0.5 ppm.

It will now be shown to what extent the determination of R, is affected by inaccurate
values of latitude and azimuth. Expanding equation (6) to terms in e and differentiating it
with respect to ¢ and a, we get

dR, = a ¢’ sin @ cos ¢(1 + 2 cos’a) d ¢ +2ae’cos’ ¢ sin a cos a da. )]

The maximum error caused by an error in latitude occurs when ¢ = 45° and a = 0, amounting
to 1130 m per degree. The maximum error due to inaccuracy of azimuth occurs at the equator
if a = 45° and amounts to 750 m per degree.

This shows that for the purpose of reductions of lines such as can be measured in practice
the errors in latitude and azimuth are not at all of major concern to surveyors. It is for this
reason that various geodetic agencies customarily tabulate the values of R, or their logarithms
at intervals of 1° of latitude and 5° of azimuth to be used with visual interpolation, if any. In
fact, tables computed for the Clarke 1866 ellipsoid may be safely used with reductions to the
GRS80 ellipsoid (used for NAD83), except in high precision surveys at very high elevations,
since the values of R, for the two ellipsoids are the same within 500 m.

How does all this affect the surveyor who does his computations in plane coordinates? It
tells him that the determination of the radius of curvature for the line is a trivial matter in-
deed.

Equation (6) can be written as

Ry= U (10)
1 +V cos’a
and the values of U and V can be precomputed on a calculator once and for all and tabulated
at 1° intervals of latitude to the nearest 100 m and five decimals respectively, for use
anywhere in the world without interpolation. The latitude of the survey area can be obtained
from an atlas. One set of U, V values will suffice for practically any survey.

Alternatively, these values can be tabulated against northing values on the central meridian
of the zone. This is acceptable because the latitude of a point can differ from the corre
sponding footpoint latitude by only some minutes.

As for the value of a. this can be taken as meaning the grid azimuth, perhaps only with ad-
dition of convergence in places far away from the central meridian in Lambert projection
zones and at high elevations.

The Role of Geoid Heights
From equation (4) we have the approximation

L==Ly[l - hy, /R (AWLo)*/2]. (11)




Differentiation of (11) with respect to the heights gives
DL, = —(Lolﬂla)(dhl + dhy)/2 - (Ah/L,)(dh,- dhy). (12)

Now let S denote the sea level distance and H the elevation above sea level. If h is replaced
by H in equ{‘ations (1)-(3) and (4)-(5) then sea level distance is obtained as the result. Further,
let geoid heﬁght be denoted by its customary symbol N (no relation to the same symnbol in
(6)), N=h-H, AN =N, - N, N, =(N; +N,)/2,and AH=H, - Hj,. Then from (12) we have

s=S—$Nm/Ra—AHAN/S. (13)

Equationsj (12) and (13) show that the error in reduced distance due to omission of geoid
heights is composed of two parts. The first part is caused by convergence of ellipsoid normals
and becomeis significant when the values of N are large. The second part is due to a local
slope of the geoid with respect to the ellipsoid which can vary from nothing to tens of
seconds. It ¢an amount to several parts per million over steep lines. Thus it is clear that not
only the average value of geoid height but also the difference in geoid heights between the
ends of the line can be important in precise surveys. Any shortcuts in their application are left
to the judgment of the users.

Mark to-M%rk Distance

Permanent records of measured distances are kept most conveniently in terms of slope
distances between the marks on the ground. Geodetic and sea ievel distances may be subject
to change if elevations that were used for their reductions have over the years been re-
established with greater accuracies, and it may be difficult to trace their previous values.

Let H;, Hz be elevations of station marks and h’j, h’ the heights of EDM instrument and its
target. Put AH= H2 - H,, Ah’=h2 - h’,, and h'm = (h’, + h2)/2. Then the mark-to-mark
distance is given by

L = [Lo” + AH? - (AH + Ah)Y"2 - h’,LyR
= (Lo’ 1 2AW'AH - Ab®)"? - 1, Ly/R, (14)
|
where R is a|standard radius of the Earth. This equation is derived by ordinary geometry, first
under the assumption that the normals at the two points are parallel, which gives the first
term, then ajding the second term to allow for their convergence.
Equation (1 = can be written approximately as

Ly = Lo(1 + /R - ANAH/L,), (15)
i
which shows that the accuracy of the reduction is not sensitive to changes in elevations. For
nearly horizontal lines the last term of (151 is nearly zero, and if the measurements are per-
formed from|near the ground (eye levell then Lo and Lg differ by less than 0.3 ppm. Note the
analogy between this equation and (131.



Example The following example is based on the GRS80 ellipsoid (a= 6378137 m,
€2=0.006694380, eZ = 0.006739497=.

Point 1 Point 2
H 1000.00 m 1700.00 m
N 20.00 20.50
hg 1020.00 1720.50
h’ 5.30 1.50
h 1025.30 1722.00
35°
U 6385200 (by (6))
A% 0.00452 (by (61))
a 234°
Ra 6375200 (by (10))
L, 15000.0000
L 15000.1689 (by (14
Ly 14983.8116 (by (1))
L= 14980.5837 (by (21 or (41
S 14980.5872 (by 3) or (51)
S 14980.6581 (like s, using H)
S 14980.5871 (by (13))

If R,, is changed by + 1000 m, s is computed as 14980.5877 m, which agrees with what
can be predicted by (7=. Note also that in this example the mark-to-mark distance is longer
than the distance between the instrument and the target.

Concluding Remarks

Errors in geometric reductions of distances can be classified as resulting from two categories
of the approximations, (1) determination of the radius of the sphere corresponding to the line
and (2) the heights of the endpoints of the line above the ground, the geoid, and the ellipsoid.

The first source of error is of little concern because the required radius can be obtained
with sufficient precision by crude methods. Its determination from state plane coordinates
presents no particular problem. In low elevations even a standard value of the radius of the
Earth will be satisfactory.

Errors in the three kinds of heights affect the accuracy of the result identically. In all cases
they can be split into two parts, one depending on the mean value of the heights and the other
on the difference in heights. Both can be important.

The equations of this paper have been constructed so as to give precisions beyond what is
required in most engineering surveys. Any shortcuts and omissions to suit particular needs
are left to the decision of the users.
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