SOLUTION TO PROBLEM NO. 71

LINE C-E = R x sin ϕ = 2640, SO sin ϕ = $\frac{2640}{R}$ ARC LENGTH M-E = 2640.5 = R x ϕ (IN RADIANS), SO ϕ = $\frac{2640.5}{R}$ $\frac{\sin \phi}{\phi} = \frac{2640 / R}{2640.5 / R} = 0.999810642$ FROM TRIGONOMETRY, sin ϕ = $\phi - \frac{\phi^3}{3!} + \frac{\phi^5}{5!} - \frac{\phi^7}{7!} + ...$ 0.999810642 = $1 - \frac{\phi^2}{6} + \frac{\phi^4}{120} - ...,$ FROM WHICH $\phi^4 - 20 \phi^2 + 0.02272297 = 0$ AFTER DROPPING ALL TERMS ABOVE ϕ^4

USING THE QUADRATIC EQUATION TO SOLVE FOR ϕ^2 AND THEN TAKING THE SQUARE ROOT OF THE RESULT YIELDS A GOOD APPROXIMATION:

φ = 0.033707759 RADIANS OR 1°55'52.7"

FROM WHICH R= 2640.5 / 0.033707759 = 78,335.08'

MAKING C-M = 78,335.08 - 78,335.08 cos 1°55'52.7" = 44.5'