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Introduction 

In the following paper and accompanying worksheet I will go over the random sources of error that affect the 

measurements of a modern total station and how they influence the derived coordinates of a surveyed point. The 

calculated precisions assume that the systematic errors have been accounted for and properly reduced with calibration 

and field procedures. 

 

Sources of Error 

Random Error Systematic Error 

• Pointing & Reading (σd) – Provided by manufacturer   

• EDM Constant (σEc) ) – Provided by manufacturer   

• EDM Scale (σEs) ) – Provided by manufacturer   

• Centering error @ Instrument over the point (σI) - Estimated 

• Centering error @ Target over the point (σT) - Estimated 

• Plumbness of Prism pole error (σP) - Calculated 

• Centering error of the reflector optical center vs center of 

prism holder (σR) – Provided by manufacturer   

• Measurement of height of instrument (σVi) - Estimated 

• Measurement of height of target (σVt) - Estimated 

 

• Horizontal Collimation 

• Tilting Axis 

• Vertical Collimation 

• Compensator index 

• Circle Eccentricity 

• Circle Graduation 

• Collimation of EDM 

*These can be reduced by F1 + F2 observations and 

regular calibration 

• Environmental conditions 

• Un-even heating of the instrument / calibration 

at a different temperature 

• Vibrations/tripod instability 

• Prism pole out of level 

• EDM out of calibration 

*These can be reduced equipment calibration & field 

procedures. 

 

Pointing & Reading error (σd) 

Pointing and reading error is specified by the manufacturer in +/- arc seconds (σd) in ISO (17123-3) or DIN (18723) 

standards. This is the angular standard deviation of a single direction of a f1+f2 measurement. To get the standard 

deviation of an angle, multiply the supplied standard deviation by √2, because there are two pointings in a measured 

angle. One at the back sight and one at the foresight.  

 

σAg = σd * √n 

Ex. σAg = 3” * √2 (for a 3” instrument) 

σAg = 4.24” 

 



To get the standard deviation of the angle observed over multiple sets you must divide the standard deviation by √n 

where n is the number of sets. 

σAg = +/- (σd * √2) / √n 

Ex. 4.24” / √3 (for 3 rounds of observations of an angle) 

σAg = 2.45” 

 

 

To get the standard deviation of the angle observed with a single face (f1 only), substitute n = 0.5 into the same 

equation as you are taking 0.5 sets of observations. 

σAg = (σd * √2) / √n 

Ex. 4.24” / √0.5 (for a single face observation of an angle and a 3” instrument) 

σAg = 6” 

EDM Error (σEc + σEs) 

The EDM constant error is specified by the manufacturer (ISO 17123-4) with two components, the constant, in +/- 

meters or mm (σEc) and a scale component (σEs) that’s in PPM. This quoted accuracy is based off a single measured 

distance, such as in tracking mode. However, it is common for the instrument to take 3-5 (depending on settings) 

distance observations and use the mean of those measurements. 

The σEc + σEs may be different for IR (infrared) vs RL (reflectorless) measurements, and it should be noted that RL EDM 

measurements are only at their quoted accuracy when shooting a target perpendicular to the LOS (line of site) with 

good reflectivity and a flat surface, free of obstructions. The accuracy degrades significantly past 30° and should be 

avoided. To calculate the combined effect these two components have on the measured distance (σSD) we must use the 

following equation where nD is the number of distance measurements taken by the instrument. 

 

σSD = +/- (σEc
 + (σEs*SD)) / √ nD 

Ex. σSD = (0.002 + ((2 / 1000000) * 500) / √5 (for a 2mm +/- 2 PPM instrument @ 500m measured with 5 distance measurements taken) 

σSD = 0.0013m 

Ex. σSD = (0.002 + ((2 / 1000000) * 500) / √1 (for a 2mm +/- 2 PPM instrument @ 500m measured in tracking mode) 

σSD = 0.0030m 

 

Centering error (horizontally) of the reflector glass over the point (σR) 

Different reflectors are made to different quality standards. However, all reflectors contain some quantity of centering 

error. That is the amount the optical center of the prism may vary when compared to the vertical axis of the prism 

holder. These values can be found on most manufacturers’ websites. They generally range from 0.0003m to 0.002m. 

This is not to be confused with beam deviation. When a reflector is quoted as having an X ” of beam deviation, that 

value affects the maximum range of the EDM, not so much the precision of the distance measurement. The more the 

EDM beam diverges, the more the range is reduced. 

 

 



Centering error (horizontally) over a point (σI + σT + σP) 

The ability to perfectly center the instrument and target over the point horizontally affects the measured slope distance 

(SD), derived horizontal distance (HD), the measured azimuth (AZ) and subsequently the derived horizontal position of 

the point (N & E). These can be estimated based on how well the points center can be defined, the condition of the 

tribrach/prism pole, whether a bipod was used and the height of instrument/target. This should not be confused as the 

centering error provided by the manufacturer of a reflector based on the precision in which the reflector was 

constructed (σR).  

An old, beat-up tribrach that hasn’t been recently adjusted, on a tripod will have a higher centering error than a newer 

tribrach in good condition. And a prism pole at a 2m HT (height of target) without a bipod is going to have a larger 

standard deviation due to plumbness of pole (σP) versus a mini prism with a HT of 0.100m. This value can be 

approximated with a function based on the bubble sensitivity of a pole (Ps) and the HT. The bubble sensitivity is defined 

as the angular deviation of the prism pole with respect to the vertical axis that is present when a level bubble moves 2 

mm from the center. The idea is the surveyor wouldn’t allow the bubble to be out of center by more than 2mm. At that 

distance, the edge of the bubble touches the sides of the black circle on the viewing glass (Leica). If you are unsure of the 

sensitively of your poles level bubble you can assume it is 20’. 8’ bubbles are available for higher precision work and 

some topo poles have 40’ bubbles. 

 

σP = HT * tan(Ps) 

Ex. σP = 2.000 * tan(20’) (for a 2m topo rod) 

σP = 0.012m 

Ex. 0.10 * tan(20’) (for a mini prism at its lowest extension) 

σP = 0.0006m 

 

As you can see there is a significant difference based on your HT, this can be greatly reduced using a bipod. If a bipod is 

used, I recommend reducing the affect Ps has on the derived error by 4x. This is because now the surveyor is capable of 

precisely holding the bubble within the middle by 0.5mm. This assumes the pole is straight and the level bubble is 

calibrated. The equation to be used with a bipod is as follows: 

 

σP = HT * tan(Ps / 4) 

Ex. σP = 2.000 * tan(20’ / 4) (for a 2m topo rod) 

σP = 0.003 

 

This equation assumes the pole tip is precisely centered on the point, which is easier done with forced centering points, 

a mag nail or capped post for example.  

If a tribrach and prism are used, then σP should be replaced with σT, which is the standard deviation of the target 

centering over a point and is due to imperfect levelling, imperfections in perpendicularity of the optical plummet and 

not being able to precisely make out the center of the point while viewing it through the optical plummet. This is more 

difficult to calculate based on the variables of the equipment condition and viewability of the point. I recommend 

estimating a value of 0.003m – 0.005m if the point has a well-defined center and the tribrach is in good condition. The 

perpendicularity of the optical plummet can be checked with tribraches that rotate by centering the point, rotating the 

tribrach, and checking to see if the point is still centered. This is not possible with fixed tribraches. To check these, you 

can center the tribrach, then install an instrument in good repair onto it and use the instruments eyepiece to verify it 



agrees with the tribrach. The centering error at the instrument (σI) has the same contributors as that of σT, however 

since the instrument has a much more sensitive level bubble and generally the tribrach is stored in better conditions, I 

tend to use a smaller value here. Somewhere around 0.002m if your setup point has a well-defined center. 

 

Measurement of height of instrument & target (σVi + σVt) 

When we measure the HI or HT there are random errors associated with the measurements of those heights. These 

values can be estimated as there is no accurate way to calculate them. The error associated with measuring the HI (σVi) 

is generally smaller than that of measuring the HT (σVt) as the most instruments tend to have a more well-defined 

vertical center compared to most reflector back plates. This is especially true when using the bottom mark that’s present 

in newer total stations. This rule is reversed when using prism poles that have snap in vertical graduations, the Leica 

GLS12 for example, or a mini prism with screw together extensions. I generally tend to use a value of 0.003m for σVi and 

a value of 0.005m for σVt when using a prism on a tripod and 0.001-0.003m when using a prism pole (depending on the 

model of pole and the condition of the tip). 

 

Error in determining an azimuth (σAZ) 

We know the azimuth to a point can be determined by a function of the azimuth at the backsight (AZBS) and the 

measured angle (Ag) 

 

AZ = AZBS + Ag – 180 

 

The standard deviation of the azimuth (σAZ) to the foresight can be determined using the law of error propagation on 

the function and adding in the effect of the horizontal error due to centering as a ratio over the measured distance; 

 

σAZ = √ ((σAZBS)
2 + (σAg)2 + (σI / HD)2 + (σP / HD)2 + (σR / HD)2) 

 

Since we are assuming the control we are coming off of are without error and are holding them as fixed (we are 

calculating relative accuracy), then we can assume the derived azimuth at the backsight is also without error. Therefor; 

 

σAZ = √ (0)2 + (σAg)2 + (σI/HD)2 + (σP/HD)2+ (σR/HD)2 

(Continuing on from our above example with a HT = 1.500 and using a bipod)
 

Ex. σAZ = √(((3” * √2) / √1)2 + (0.002/499.981)2 + (0.0022/499.981)2 + (0.002/499.981)2)/(π/648000) 

Ex. σAZ = 4.49” 

 

 

 

 

 



Error in determining the horizontal distance (σHD) 

The horizontal distance (HD) is the slope distance reduced with the vertical component removed. It is a function of the 

SD and the zenith angle (ZA) 

HD = SD * sin(ZA) 

 

Using error propagation, we can determine the standard deviation of the horizontal distance (σHD) is equal to; 

 

σHD = √((∂HD/∂SD)2 * σSD2 + (∂HD/∂ZA)2 * σZA2) 

 

σZA is equal to the standard deviation of a single direction (σd) because a zenith angle is not the result of two pointings, 

but a single pointing relative to the vertical axis of the instrument as defined by gravity at that point. Therefor; 

 

(∂HD/∂SD) = sin(ZA) 

(∂HD/∂ZA) = SD * cos(ZA) 

 

σHD = √((sin(ZA)2 * (σEc
 + (σEs*SD))2 + (SD * cos(ZA))2 * (σd / √n)2) 

Ex. √((sin(90.5)2 * (0.002 + ((2/1000000)*500))2 + (500 * cos(90.5))2 * (3” *(π/648,000) / √1)2) 

(for a 2mm +/- 2 PPM, 3” instrument @ a SD = 500m and ZA = 90° 30’ 00” in tracking mode) 

σHD = 0.0030m 

 

The total standard deviation of the horizontal distance (σHDt) also includes the errors from centering the instrument 

over the point (σI), target (σT) (or pole plumbness (σP)) and the centering error of the reflector (σR). Thus the final 

equation for the σHD is as follows; 

 

σHDt = √(σHD2 + σI2 + σP  or σT2 + σR2) 

Ex. σHDt = √((0.003)2 + 0.0022 + (1.5 * tan(20/4”))2 + 0.0022) 

(Continuing from above, using an instrument centering of 2mm, a pole and bipod at 1.5m HT and a standard Leica circular prism) 

σHDt = 0.0047m 

 

Error in determining the vertical distance (σVD) 

The vertical distance (VD) is the slope distance with the horizontal component removed. It is a function of the SD and 

the zenith angle (ZA). 

VD = SD * cos(ZA) 

 

 

 



Using error propagation, we can determine the standard deviation of the vertical distance (σVD) is equal to; 

 

σVD = √((∂VD/∂SD)2 * σSD2 + (∂VD/∂ZA)2 * σZA2) 

 

(∂VD/∂SD) = cos(ZA) 

(∂VD/∂ZA) = -SD * sin(ZA) 

 

σVD = √((cos(ZA)2 * (σEc
 + (σEs*SD))2 + (-SD * sin(ZA))2 * (σd / √n)2) 

Ex. √((cos(90.5)2 * (0.002 + ((2/1000000)*500))2 + (-500 * sin(90.5))2 * (3” *(π/648,000) / √1)2) 

(for a 2mm +/- 2 PPM, 3” instrument @ a SD = 500m and ZA = 90° 30’ 00”) 

σVD = 0.0073m 

 

 

Error in determining the elevation of a point (σEL) 

The standard deviation of the elevation of the point we are measuring to is the sum of errors of the measured vertical 

distance (σVD) and the standard deviation of how well we measure the HT (σVt) and HI (σVi).  

 

σEL = √(σVD2 + σVt
 2 + σVi

 2) 

Ex. σEL = √(0.00732 + 0.001 2 + 0.0032) 

(Continuing from above, using an instrument vertical  centering of 1mm and target vertical centering of 3mm) 

σEL = +/- 0.0079m 

σEL95% = 2 * (σEL) = +/- 0.0159m 

 

Error in determining the horizontal coordinates of a point (σN + σE) 

The standard deviation of the coordinates of the point we measure to are a function of the azimuth (AZ) and the 

horizontal distance (HD) 

 

∆N = HD * cos(AZ) 

 

 

 

 

 

 

 



Using error propagation, we can determine the standard deviation of the relative northing of the measured point (σN) is 

equal to; 

σN = √((∂N/∂HD)2 * σHDT
2 + (∂N/∂AZ)2 * σAZ2) 

σN = √(cos(AZ)2 * σHDT
2 + (-HD*sin(AZ))2 * σAZ2) 

Ex. σN = √(cos(155)2 * (0.0047)2 + (-499.981*sin(155))2 * ((4.49”)2) 

(Continuing from our above example and AZ = 155° 00’ 00”) 

σN = 0.0062m 

σN95% = 2 * (σN) = +/- 0.0124m 

 

 

∆E = HD * sin(AZ) 

 

 

Using error propagation, we can determine the standard deviation of the relative easting of the measured point (σE) is 

equal to; 

σE = √((∂E/∂HD)2 * σHDT
2 + (∂E/∂AZ)2 * σAZ2) 

σE = √(sin(AZ)2 * σHDT
2 + (HD*cos(AZ))2 * σAZ2) 

Ex. σE = √(sin(155)2 * (0.0047)2 + (-499.981*cos(155))2 * ((4.49”)2) 

(Continuing from our above example and AZ = 155° 00’ 00”) 

σE= 0.0101m 

σE95% = 2 * (σE) = +/- 0.0202m 

 

σHz Pos= √ σN2+ σE2 

σHz Pos = +/- 0.0118m 

σHz Pos95% = +/- 0.0237m 

 

 

 

 

 

 

 

 

 



Conclusion 

The purpose of these formulae and the accompanying worksheet are to determine two things. 

1. Statistically, how precise are you measuring/how precise are the coordinates you are deriving. 

2. Given a required precision, what variables can you adjust to meet that precision. 

 

For example, we are asked to “layout some building corners to within +/- 3mm.” 

This is a common request from a client, and because it isn’t very specific, we will have to make a few assumptions. 

A. The requested precision will be relative, and we will assume our control is without error. Usually, a project must 

be relatively more precise than absolutely, as the structures and utilities within the scope of a project need to tie 

in more precisely with each other than with structures and utilities outside of the project scope. Not to say 

absolute precision isn’t important. But we can assume the control network has considered the absolute accuracy 

required. 

B. It is rare that a confidence level accompanies a tolerance specified by a client, and there is a good chance they 

won’t fully understand what a standard deviation is or how that relates to confidence intervals. Although it will 

require more stringent controls, we should usually err on the side of safety and use 95% confidence depending 

on what the layout is for. I’ve found it common that a client will ask for excessively precise tolerances without a 

full understanding of what is required to achieve them. That being said, for this task I understand these building 

corners are only for concrete formwork and probably don’t actually require 95% confidence of 3mm. There will 

most likely be deviations in the physical formwork of more than 3mm. We will work towards 1 standard 

deviation of confidence for this example. 

C. We can ignore elevations in this example as they were not asked for. 

Continuing with our example above we are currently sitting at a σHz Pos = 12mm, not very close to our required 

precision. Since we have control setup around our worksite, we can ensure our max SD < 50m. That alone gets our σHz 

Pos = 5.6mm. Next, we are going to swap out our 1.5m rod/bipod to a mini with a HT of 0.100m which gets us to 4.7 

mm. Because we are staking out, it is difficult and time consuming to make multiple sets to each interation of a stake 

out point, so we will refrain from adjusting our n value. However, taking the instrument off tracking mode got us down 

to 4.3 mm. At this point it becomes very difficult to increase our precision. If we swap out our instrument for a +/- 1” 

1mm +/- 1PPM instrument, we only get down to 4.1mm. To get that last little bit of precision we have two options. We 

need to either center our instrument to within 1mm (This may be doable with extra care and ensuring the instrument 

optical plummet is perpendicular to the vertical axis by centering over the control point and rotating the instrument and 

ensuring there is no deviation) or using a prism with a lower σR. If we keep our mini and take great care in centering the 

instrument to +/- 1mm we get our a σHz Pos = 3.3mm or rounding down to +/- 3mm. 


